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Abstract
Introduction: The application of specific instructions significantly improves energy, performance, and code size of configurable 
processors. The design of these instructions is performed by the conversion of patterns related to application-specific operations 
into effective complex instructions. This research was presented at the icitkm Conference, University of Delhi, India in 2017. 

Methods: Static analysis was a prominent research method during late the 1980’s. However, end-to-end measurements consist 
of a standard approach in industrial settings. Both static analysis tools perform at a high-level in order to determine the program 
structure, which works on source code, or is executable in a disassembled binary. It is possible to work at a low-level if the real 
hardware timing information for the executable task has the desired features.

Results: We experimented, tested and evaluated using a H.264 encoder application that uses nine cis, covering most of the 
computation intensive kernels. Multimedia applications are frequently subject to hard real time constraints in the field of com-
puter vision. The H.264 encoder consists of complicated control flow with more number of decisions and nested loops. The 
parameters evaluated were different numbers of A partitions (300 slices on a Xilinx Virtex 7each), reconfiguration bandwidths, as 
well as relations of cpu frequency and fabric frequency f

CPU/
f
fabric

. f
fabric

 remains constant at 100MHz, and we selected a multiplicity 
of its values for f

CPU
 that resemble realistic units. Note that while we anticipate the wcet in seconds (wcetcycles/ f 

CPU
) to be lower 

(better) with higher f
CPU

, the wcet cycles increase (at a constant f
fabric

) because hardware cis perform less computations on the 
reconfigurable fabric within one cpu cycle.

Conclusions: The method is similar to tree hybridization and path-based methods which are less precise, and to the global ipet 
method, which is more precise. Optimization is evaluated with the Discrete Particle Swarm Optimization (dpso) algorithm for wcet. 
For several real-world applications involving embedded processors, the proposed technique develops improved instruction sets 
in comparison to native instruction sets.

Originality: For wcet estimation, flow analysis, low-level analysis and calculation phases of the program need to be considered. 
Flow analysis phase or the high-level of analysis helps to extract the program’s dynamic behavior that gives information on 
functions being called, number of loop iteration, dependencies among if-statements, etc. This is due to the fact that the analysis 
is unaware of the execution path corresponding to the longest execution time.

Limitations: This path is executed within a kernel iteration that relies upon the nature of mb, either i-mb or p-mb, determined by 
the motion estimation kernel, that is, its’ input depends on the i-mb and p-mb paths ,which also contain separate cis leading to 
the instability of the worst-case path, that is, adding more partitions to the current worst-case path can result in the other path 
becoming the worst case. The pipeline stalls for the reconfiguration delay and continues when entering the kernel once the 
reconfiguration process finishes.

Keywords: embedded processor, specific integrated circuit application, worst case execution time, particle swarm  
optimization, discrete particle swarm optimization.
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El peor caso estático de optimización del tiempo de 
ejecución utilizando dpso para arquitectura asip
Resumen
Introducción: la aplicación de instrucciones específicas mejora significativamente la energía, el rendimiento y el tamaño del código de los procesadores 
configurables. El diseño de estas instrucciones se realiza mediante conversión de patrones relacionados con operaciones específicas de la aplicación con 
instrucciones complejas y efectivas. Esta investigación se presentó en la Conferencia icitkm, Universidad de Delhi, India en 2017.

Métodos: el análisis estático fue un método de investigación prominente durante la década de 1980; sin embargo, las mediciones de extremo a extremo son 
un enfoque convencional en los entornos industriales. Ambas herramientas de análisis estático se desempeñan a un alto nivel para determinar la estructura 
del programa que funciona en el código fuente, o que se ejecuta en un binario desmontado. Es posible trabajar a bajo nivel si la información de tiempo de 
hardware real para la tarea ejecutable presenta las características deseadas.

Resultados: experimentamos, probamos y evaluamos con una aplicación de codificación H.264 que utiliza nueve elementos de configuración y cubre la 
mayoría de los núcleos de cálculo intensivo. Las aplicaciones multimedia están frecuentemente sujetas a duras restricciones en tiempo real en el campo de 
la visión por computador. El codificador H.264 consiste en un complicado flujo de control con más número de decisiones y bucles anidados. Los parámetros 
evaluados fueron de diferentes números de particiones A (300 cortes en un Xilinx Virtex 7 cada uno) y anchos de banda de reconfiguración, así como de 
relaciones de frecuencia de cpu y frecuencia de 

fabric 
fcpu/f

fabric
. f

fabric
 permanece constante a 100MHz. Seleccionamos varios de sus valores para fcpu que se 

asemejan a unidades realistas. Es importante tener en cuenta que aun cuando anticipamos el wcet en segundos (ciclos wcet/ fcpu) para que fuesen inferiores 
(mejores) con fcpu más alta, los ciclos wcet aumentan (en un tejido constante f) porque los ci de hardware realizan menos cálculos en el tejido reconfigurable 
dentro de una cpu de ciclo.

Conclusiones: el método es similar a la hibridación de árboles y métodos basados en rutas, los cuales son menos precisos, y al método I pet global, que es 
más preciso. La optimización se evalúa con el algoritmo de optimización de enjambre de partículas discretas (dpso) para wcet. Para varias aplicaciones del 
mundo real que involucran procesadores integrados, la técnica propuesta desarrolla conjuntos de instrucciones mejorados en comparación con los conjuntos 
de instrucciones nativas.

Originalidad: para la estimación de wcet se debe considerar el análisis de flujo, el análisis de bajo nivel y las fases de cálculo del programa. La fase de análisis 
de flujo o alto nivel de análisis, ayuda a extraer el comportamiento dinámico del programa que proporciona información sobre las funciones que se invocan, 
el número de iteraciones de bucle, las dependencias entre sentencias if, etc. Esto se debe a que el análisis desconoce la ruta de ejecución correspondiente 
al tiempo de ejecución más largo.

Limitaciones: esta ruta se ejecuta dentro de una iteración del núcleo que depende de la naturaleza de mb, ya sea i-mbo p-mb, determinada por el núcleo de 
estimación de movimiento, es decir que su entrada depende de las rutas i-mb y p-mb, que también contienen elementos de configuración separados que 
conducen a la inestabilidad de la ruta del peor de los casos, es decir que agregar más particiones a la ruta actual del peor de los casos puede hacer que la 
otra ruta se convierta en el peor de los casos. La tubería se detiene por la demora de reconfiguración y continúa al ingresar al núcleo una vez que finaliza el 
proceso de reconfiguración.

Palabras clave: procesador integrado, aplicación de circuitos específicos integrados, el peor tiempo de ejecución de casos, optimización por enjambre de 
partículas, optimización discreta por enjambre de partículas. 

O pior caso estático de otimização do tempo de 
execução utilizando dpso para arquitetura asip
Resumo
Introdução: a aplicação de instruções específicas melhora significativamente a energia, o desempenho e o tamanho do código dos processadores configu-
ráveis. O desenho dessas instruções é realizado mediante a conversão de padrões relacionados com operações específicas da aplicação com instruções 
complexas e efetivas. Esta pesquisa foi apresentada na Conferência icitkm, Universidade de Délhi, Índia em 2017.

Métodos: a análise estática foi um método de pesquisa proeminente durante a década de 1980; contudo, as medições de extremo a extremo são uma abor-
dagem convencional nos contextos industriais. Ambas as ferramentas de análise estática se desempenham a um alto nível para determinar a estrutura do 
programa que funciona no código fonte ou que se executa num binário desmontado. É possível trabalhar a baixo nível se a informação de tempo de hardware 
real para a tarefa executável apresentar as características desejadas.

Resultados: experimentamos, testamos e avaliamos com uma aplicação de codificação H.264 que utiliza nove elementos de configuração e cobre a maioria 
dos núcleos de cálculo intensivo. As aplicações multimídias estão com frequência sujeitas a duras restrições em tempo real no campo da visão por compu-
tador. O codificador H.264 consiste num complicado fluxo de controle com mais número de decisões e circuitos aninhados. Os parâmetros avaliados foram 
de diferentes números de particiones A (300 cortes num Xilinx Virtex 7 cada um) e largos de banda de reconfiguração, bem como de relações de frequência 
de cpu e frequência de 

fabric 
fcpu/f

fabric
. f

fabric
 permanece constante a 100MHz. Selecionamos vários de seus valores para fcpu que são semelhantes a unidades 

realistas. É importante considerar que, ainda quando antecipamos o wcet em segundos (ciclos wcet/ fcpu), para que fossem inferiores (melhores) com fcpu mais 
alta, os ciclos wcet aumentam (num tecido constante f) porque os ci de hardware realizam menos cálculos no tecido reconfigurável dentro de uma cpu de ciclo.

Conclusões: o método é similar à hibridação de árvores e métodos baseados en rotas, os quais são menos precisos, e ao método I pet global, que é mais 
preciso. A otimização é avaliada com o algoritmo de otimização por enxame de partículas discretas (dpso) para wcet. Para várias aplicações do mundo real 
que envolvem processadores integrados, a técnica proposta desenvolve conjuntos de instruções melhoradas em comparação com os conjuntos de instruções 
nativas.

Originalidade: para a estimativa de wcet, deve-se considerar a análise de fluxo, a análise de baixo nível e as fases de cálculo do programa. A fase de análise 
de fluxo ou alto nível de análise ajuda a extrair o comportamento dinâmico do programa que proporciona informação sobre as funções invocadas, sobre o 
número de iterações de circuito, as dependências entre sentenças if, etc. Isso se deve a que a análise desconhece a rota de execução correspondente ao 
tempo de execução mais longo.

Limitações: essa rota é executada dentro de uma iteração do núcleo que depende da natureza de mb, seja i-mb, seja p-mb, determinada pelo núcleo de esti-
mativa de movimento, quer dizer que sua entrada depende das rotas i-mb e p-mb, que também contêm elementos de configuração separados que conduzem à 
instabilidade da rota do pior dos casos; em outras palavras, adicionar mais partições à rota atual do pior dos casos pode fazer com que a outra rota se converta 
no pior dos casos. A tubulação se detém pela demora de reconfiguração e continua ao ingressar no núcleo assim que finaliza o processo de reconfiguração.

Palavras-chave: processador integrado, aplicação de circuitos específicos integrados, o pior tempo de execução de casos, otimização por enxame de 
partículas, otimização discreta por enxame de partículas.
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1. Introduction

The application of specific processing elements 
needs modern optimized embedded systems. 
Application Specific Instruction Set Processors 
(asips) are crucial for the desired physical and 
functional constraints of an embedded system. 
These must maintain high programmability and 
flexibility. 

For a particular application domain, perfor-
mance and power optimization of the processing 
elements are essential. The optimizations must 
include vector processing, complex domain-specific 
arithmetic operations, simd support, etc., provid-
ing extended instruction sets to the processor. The 
architecture organization comprises register files 
with specific configurations (data width, depth, or 
port size), local memories of application data, real-
time data flow customized channels, and synchro-
nization ports with respect to various soc blocks. 
Appropriate emulation techniques are desired to 
provide optimized configuration possibilities by 
exploring customization of software_hardware 
systems for accuracy and performance estimates. 
For this purpose, the classical hardware character-
ization and functional metric applications such as 
the execution time, resource congestion and cache 
performance need to be optimized. Early physical 
metrics estimations that include the occupied area 
and energy/ power consumption are also neces-
sary. Thus, hardware-based emulation techniques 
are an alternative to such problems, which require 
a scalable and accurate software-based simulation 
approach.

Stringent time constraints are essential to any 
hard real-time system and can be derived from 
the corresponding system under control. These 
constraints need to satisfy the upper limits of the 
respective execution times. However, in general it 
is not easy to maintain this for any program, hence 
the halting problems remain difficult to solve. Real-
time systems however, have programming restric-
tions that guarantee the culmination of a program 
since recursions are never allowed and are bounded 
to the chosen iteration loop count. 

The work assumes a real-time system with 
a number of tasks that can guarantee the desired 
functionality. Fig. 1 provides the relevant proper-
ties corresponding to a real-time task. Each task 
demands a specific execution time variation based 
on either environmental behavior of input data. 

The upper curve indicates the execution times in 
which best-case execution time (bcet) and worst-
case execution time (wcet) denotes the short-
est and the longest execution times respectively. 
Mostly the state space is very large to explore every 
possible execution exhaustively to find out the 
exact bcet as well as the wcet. In one approach, 
the execution time measurement considers a subset 
of all possible executions in order to compute the 
minimal and maximal observed execution times. 
In general, the approach overestimates the bcet 
and underestimates the wcet. Nowadays a com-
mon approach in many industries is to determine 
the execution-time bounds and it is known as the 
dynamic timing analysis.

The wcet analysis provides a priori informa-
tion on a program’s worst possible execution time 
before the program is used in any system. Reliable 
wcet estimation is essential in real-time systems 
particularly, when the systems control the safety 
and critical segmentations like military equipment, 
vehicles, and power plants.

The lower curve corresponds to a subset of 
measured executions. The darker curve, an enve-
lope of the former, represents the times of all exe-
cutions. It’s minimum and maximum are the 
best-case and worst-case execution times respec-
tively, abbreviated bcet and wcet.

2. Related Work

For wcet estimation, flow analysis, low-level 
analysis and calculation phases of the program 

Fig . 1. Real-time system with wcet problem
Reference: [1]-[12].
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need to be considered. Flow analysis phase or the 
high-level analysis helps to extract the program’s 
dynamic behavior that gives information about the 
addressed functions, number of loop iterations, 
dependencies among if-statements, etc. As the 
analysis is unaware of the execution path corre-
sponding to the longest execution time, it requires 
such information to give a safe approximation and 
must include the possible program executions. 
There are methods to procure the information such 
as manual annotations [4], automatic flow analysis 
[8]-[12], or obtained separately [5]-[7]. The anal-
ysis is usually done on the source code; machine 
or intermediate code level can be used. In case of 
global low-level analysis different caches such as 
the instruction caches [7], [9], [12]-[14], data caches 
[12], [15], [16], and branch predictors [17], [18] are 
analyzed. As compared to this, the local low-level 
analysis deals with scalar pipelines [9], [11]-[12], 
[14], [17], [19]-[21] as well as superscalar cpus [22], 
[23]. Authors in [13] have argued that an integra-
tion of cache and pipeline analysis is essential for 
processors involved with heavy interdependencies 
among elements performing different functions. 
To extract timing information, measurements and 
hardware have been used in [24]. The calculation 
phase estimates the wcet of a program by combin-
ing previous phase flow and timing information 
[1]-[12].

wcet-optimizing instruction set selection 
bears similarity to other static optimizations tar-
geting the worst-case path like instruction cache 
locking or scratchpad memory allocation of pro-
gram codes. In this section, we will point out the 
differences between these problems for the selec-
tion of the wcet-optimizing instruction. We 
also discuss the modern solutions available for 
the selection of instruction sets and explain their 
limitations. Caches are used to effectively reduce 
the average memory access latency of a cpu. It is 
extremely difficult to predict whether a memory 
access can be served by the cache hit or if it needs 
to be served by the main memory. wcet analysis 
always needs to reflect a cache miss when it cannot 
guarantee a cache hit. This analysis directs to an 
over-evaluation of the wcet bound. Cache locking 
is a software-controlled mechanism to load code 
segments into the cache and prevent them from 
being driven out. Several works utilize instruction 
cache locking techniques to reduce overestimation 
which results from a cache analysis by lowering the 

wcet bound [27], [29], [30]. In the selection pro-
cess of the instruction set which has several alter-
natives to choose from the original software or 
different cis, where implementation of the same 
functionality with the various degrees of parallel-
ism and resource requirements with the extensions 
for evaluating multiple alternatives to choose from 
(e.g., the different ci implementations), the exist-
ing algorithms for cache locking would remain 
inappropriate for our problem. Falk et al. [27] and 
Liu et al. [29] model the problem similarly using 
Execution Flow Graphs and Execution Flow Trees, 
respectively. However, the execution flow is mod-
eled on the level of function calls. Yu and Mitra [32] 
perform wcet-optimizing instruction set selection 
for extensible processors. These processors contain 
custom functional units that can be configured to 
implement the frequently used instruction pattern, 
which speeds up the process by exploiting instruc-
tion level parallelism and operator chaining. The 
wcet-optimizing instruction set is selected per 
task, that is, during task execution the instruc-
tion set is fixed. Therefore, the cost of configuring 
a selected pattern is not taken into account during 
the execution of this approach. In our work, we 
mainly target a dynamic reconfiguration based 
custom instructions with varying area demands 
(1 up to A units of the reconfigurable fabric area). 
In order to evaluate the profit of an instruction by 
reducing the wcet estimate, we need a factor that 
requires a demand in area as well as its reconfigura-
tion delay. The impact of the reconfiguration delay 
on wcet optimization is evaluated in section 5.

The application-specific instruction set archi-
tectures (isas) synthesis can be accomplished in a 
number of ways based on the first part of isa to be 
decided, is-oriented as well as structure-oriented. 
Optimization of is using the application’s behav-
ior is made with is-oriented methods [13]-[15]. The 
method is based on dependency graphs. To imple-
ment the instruction set either manually or auto-
matically, hardware design is made afterwards. 
Among different approaches the peas-i found 
to be similar to our method as both these meth-
ods consider the basic is and target pipelined risc 
architectures. Nevertheless, the peas-i involves a 
fixed set of instructions to select a subset, unlike 
our method, instruction encoding is not an issue 
here. Other approaches cannot be applied easily 
to modern pipelined risc processors due to use of 
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individually designed architectural styles such as 
the transport triggered architecture. 

Due to increasing complexity, high computa-
tion performance and manufacturing costs in line 
with rapid development of advanced integrated 
circuit (ic) technology, the demand for high-per-
formance configurable designs has surfaced. It 
requires the asips to be incorporated with the soc 
design more frequently. A most common technique 
in this regard is the generation of automated soft-
ware tools to suit asips. However, to implement the 
final rtl, this method is seldom applied. For bet-
ter asip design, the consumption time needs to be 
reduced to satisfy the constrained time-to-mar-
ket requirements. There have been other alternate 
architectural solutions that use the design, flexibil-
ity, as well as the time to market altogether. One 
of those approaches uses a low-cost gpp core with 
domain specific instructions. This type of proces-
sor architecture is termed as the asip that improves 
the application performances such as the through-
put, latency, etc., efficiently.

Authors have proposed different asip design 
flows and asip case studies [16]-[26]. Their work 
includes processor customization, processor iden-
tification and instantiates custom instructions in 
a processor. This paper proposes an alternative 
approach, which can produce better architectures 
involving hardware complexity. It aims to reduce 
the area cost in comparison with the original soft-
core processor. It analyzes the application’s source 
code initially for identification of redundant pro-
cessor instructions and removes them prior to the 
logical synthesis process.

Application Specific Instruction set Processor 
(asip) is a comparatively new approach to realize 
programmable processors, which for the targeted 
application domain can deliver very significant 
performance and power benefits, while regaining 
the advantage of functional flexibility through soft-
ware programmability. In a sense, asips bridge the 
design space between general-purpose processor 
based implementation of the application and dedi-
cated hardware implementation of the same appli-
cation as an asic.

asip Design Space has two basic classes named 
as (a) Instruction Set Architecture (isa) based pro-
cessor, but customized for application and pro-
gramming in a sw-design type of task and (b) 
Programmable-hw based. It may be of fpga pro-
gramming for a hw-design type of task. It must be 
suitable for data flow–like computation. asip design 

is not yet disciplined, but a “form of art”. Some of 
the gaps in asip methodology are: (i) incomplete 
application characterization;(ii) ad-hoc architec-
tural exploration; designer’s expertise; and (iii) 
poor software environments, especially compilers.

3. Methodology

3.1. Static Analysis techniques

To estimate wcet, the static tool examines the 
computer software instead of executing it on  
the hardware directly. Although static analy-
sis was a prominent research method during late 
1980s, end-to-end measurements offer a standard 
approach in the industrial setting. Both tools of 
static analysis perform at a high-level in order to 
determine the program structure, which works on 
source code, or executable disassembled binary. It 
is possible to work at a low-level provided the real 
hardware timing information for the executable 
task having the desired features. The presence of 
architectural features complicates the analysis  
of static wcet at low-level and improves a proces-
sor’s average-case performance that includes the 
branch prediction, instruction caches and instruc-
tion pipelines. In timing models it is still difficult  
to achieve tight wcet bounds in case these ad- 
vanced architectural features are considered. For 
example, to simplify wcet estimation for better 
predictability cache-locking techniques have been 
used.

3.2. System Model and 
Problem Formulation 

Our optimization approach is applied to Control-
Flow Graph (cfg) of an application in the binary 
format, as it is the only way to achieve secure and 
precise wcet estimate values. The granularity of 
a ci, that is, the amount of software it replaces, 
depends on the specific target architecture. For 
configuring the cis in hardware, we assume recon-
figurable fabric area to be allocable in up to A 
discrete units. This corresponds to the common 
area model of dividing the fabric area into equally 
sized partitions like in the 1D or 2D partitioned 
area models in Steiger et al. [31]. Let ci be the set 
of all cis. We assume a specific configuration j of 
a ci k ∈ci in hardware to have a constant delay tk, j 
to require area on the reconfigurable fabric ak, j∈ [1], 
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In order to provide flexibility to execute the 
original software for generated cis, we introduce 
ci super blocks. As shown in Fig. 2, ci superblocks 
begin with a conditional branch before every ci 
(the actual instruction in the binary); which jumps 
to the functionally equivalent software code when 
the ci is not implemented in hardware. If a config-
uration for the ci is available on the reconfigurable 
fabric, then it is executed instead of jumping to the 
software. The ci super block ends by joining paths 
of hardware ci and software. Multiple ci super-
blocks in the binary can execute the same ci k. Let 
B be the set of all blocks, that is, basic blocks (not 
contained in super blocks) as well as super blocks. 
The function ci(i) determines which ci k is executed 
by a super block i ∈B, that is,

ci: B → ci∪ {0}, i → k, with ci(i) = 0 ∈ci if i is a 
basic block (not a super block)

The context-dependent delay for executing the 
implementation j of ci super block i is denoted as  

ei,j for both hardware and software implementa-
tions. While ci execution on the reconfigurable  
fabric itself is context independent (tci(i), j is con-
stant, for j > 0), invoking the ci from the cpu pipe-
line can add additional cycles, for example, because 
of pipeline hazards present in ci. Therefore, ei, j≥ tci(i), j 
for j > 0. Equation (1) is used to concisely formulate 
equations on which our wcet estimation is based. 
Effectively, we obtain a cfg that can be parameter-
ized by a chosen selection using ci super blocks. In 
the following, we will introduce the wcet bound 
estimation technique we utilize and show how we 
can extend it to our problem formulation to evalu-
ate and direct our optimization.

Selecting an instruction set to optimize the 
wcet bound essentially means we aim to mini-
mize the wcet over all possible selections, that is, 
we aim to minimize the maximum execution time. 
We extend the ilp formulation of ipet for captur-
ing the implementation alternatives of a cik ∈ci. 
We introduce new variables yk, j ∈ {0, 1} for every 
implementation j with yk, j= 1 if cik is implemented 
using alternative j and yk, j= 0 otherwise.

(1)∑ = 1

The total cycle contribution of cik’s super 
block i to the wcet bound is given as follows:

(2)∑ | |
( )

The wcet for a given selection y without 
accounting for reconfiguration delay can be deter-
mined as follows:

(3)WCET (y)=

( )

i i + ∑ | |
( )

∑| |

( )

Every ci super block utilized in a kernel is 
configured exactly once before entering the ker-
nel (with zero reconfiguration delay for software 
implementation). Therefore, we obtain the wcet 
including reconfiguration delay as:

and to take a constant reconfiguration delay rk, j for 
configuring it on the fabric. For a constant recon-
figuration delay, a constant bandwidth for trans-
ferring configuration data to the reconfigurable 
fabric’s configuration memory needs to be guar-
anteed. We assume the cpu to be delayed during 
reconfiguration in this work, and therefore the 
system bus could be utilized for reconfiguration 
at a guaranteed bandwidth. Along with hardware 
configurations, a ci can be implemented using 
its original software code j = 0. Since it has been 
implemented with a software, it does not have a 
constant delay tk,0, because of specific cache and 
pipeline analysis (i.e., ak,0= rk,0 = 0).

Fig . 2. ci super block as part of a cfg
Reference: [22-23]
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(4)WCET( ) = WCET' ( ) + ∑

Putting it all together, the wcet-optimizing 
instruction set selection problem becomes a com-
binatorial problem with the following objective 
function:

(5)

( )

i i + ∑ | |
( )

∑| |

( )
+ ∑

[0,1]

However, this would result in up to 2|CI|*M con-
straints of high complexity, which becomes prac-
tically infeasible even for small values. Also, note 
that we do not need to evaluate the ilps for the ipet 
instance of the whole application, but only per ker-
nel. Therefore, ilps are considerably less complex 
(fewer variables and constraints) than the ilp for 
determining the wcet of the whole application. In 
the following section, we will show how the search 
space can be pruned and feasible y is generated 
efficiently.

3.3. Discrete Particle Swarm 
Optimization (dpso)

The pso remains a derivative-free global optimized 
algorithm having no Hessians or gradients to 
compute. The dpso applies qualitative or discrete 
distinction between the designated variables and 
is the modified pso. Kennedy and Eberhart [24] 
developed the first dpso with binary valued parti-
cles. Since then several versions of dpso have been 
developed. dpso will facilitate solving the combi-
natorial optimization problems due to its ease of 
implementation, simple structure and its robust-
ness. In the dpso algorithm of op each particle 
constitutes a tour encompassing the list of nodes 
visited such that Tmax, the distance constraint was 
obeyed. The starting and ending nodes are distinct 
and specified. To ensure a good starting solution in 
the population, the first particle was built using the 
s/d (score/distance) ratio. Beginning from the first 

node, the feasible node having the highest s/d value 
is selected as the next city that needs to be visited. 
Construction of the first particle is based on these 
s/d values as the feasible tour. The initial solutions 
for the remaining particles were constructed ran-
domly [27-28].

The new position (new tour) for each parti-
cle was calculated as follows: Generate a random 
number Λ corresponding to each node in the cur-
rent particle. If Λ <w, accept the node as a part of a 
temporary array, indicated as Ω. Include similarly 
nodes in the temporary array using the pi best par-
ticle in case Λ <c1 else use the g best  if Λ <c2. This 
process removes the duplicate nodes from Ω. Based 
on the feasibility of the temporary array, the new 
position is either accepted or randomly deleted in 
the particle until a feasible solution is obtained. For 
better efficacy and to avoid the algorithm to fall in 
local optima, researchers have used a local search 
tool such as the Reduced Variable Neighborhood 
Search (rvns). On switching neighborhoods, the 
solution space in rvns is searched. These two neigh-
borhoods of the algorithm are insert and exchange. 
While a new node is put in the insert neighborhood 
a in the existing tour, whereas it is exchanged in 
the exchange neighborhood for an existing node 
corresponding to the tour. On completion of rvns, 
optimization of the tour is performed using a 2-opt 
operation. A node insert operation is carried out 
in case the tour length is reduced by the 2-opt 
method. It attempts to increase the total score or 
fitness value of the tour. The dpso algorithm flow-
chart has been provided in Fig. 2. 

In the dpso, the particle values are restricted 
either to 0s or 1s. They can be applied for solving 
problems with integer variables. Initially, in a dpso 
algorithm, a pool of solutions is randomly gen-
erated. In the solution pool, the position vector 
describes each solution

(6)= ( )

Where n is the swarm size or the number of 
solutions (n = 1, 2, . . ., N) whereas, d is the binary 
equivalent of variables in the solution space. The 
length of the binary solution Xn is selected based 
on the number of variables as well as the binary 
bits corresponding to each variable. Each solution 
is associated with a velocity vector represented by
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(7)= ( )

During each iteration t (t = 1, 2, . . ., T), the 
dimensions of each velocity vector Vn have been 
updated by the equation

(8)( ) ( )

here, bnd and gd are the local and the global 
best positions respectively as achieved by the con-
stituent particles. The notation ω signifies the iner-
tia weight and is a constant similar to the learning 
factors θ1 and θ2. The learning factors indicate the 
importance given to the local best or the global best 
in the swarm and are based on experience. To find 
the new position of xnd (0 or 1) equation (8) has been 
used, where the random variable r is generated uni-
formly between the values 0 and 1. 

(9)( )

In this way, a swarm of size N is generated 
by iterating T time using the above procedure 
each time to achieve the optimal or near optimal 
solution.

3.4. Optimal Solution using pso

In theory, we can have up to 2|CI|*M possible selec-
tions y that we need to evaluate. In practice, how-
ever, the search space is considerably smaller for 
the following reasons: The number of possible 
hardware configurations mk per cik varies a lot, for 
example, in our evaluation we had a minimum of 1 
to a maximum of 78 = M implementations for cis 
(including software implementation) within one 
kernel. For the ciwith 78 different implementa-
tions, many implementations had different degrees 
of parallelism and latencies but required the same 
amount of area and reconfiguration delay when 
synthesized to the reconfigurable fabric. When 
considering only the minimum-latency implemen-
tation per required fabric area, our algorithm was 
able to prune the number of implementations to 
relevant ones. Therefore, in practice the relevant 
number of implementations per cik is much smaller 
than mk + 1.

The implementation y+ k for a cikis the imple-
mentation that can be chosen with minimum 
increase for an area over yk resulting in a posi-
tive profit. There might be several implementations 
according to this definition with the same required 
area. In this case, y+ k is the implementation with 
minimum latency tk, j (and min j). If no such imple-
mentation y+ k exists (i.e., no implementation with 
positive profit was found), then the ci is not con-
sidered for selecting a different implementation. 
Among the cis for which y+ k exists, the algorithm 
psochooses the one with the maximum profit and 
upgrades y to select y+ k for the chosen cik. This pro-
cess is repeated such that every iteration cik with 
maximum profit (y+ k, yk, x) is upgraded. The algo-
rithm terminates when no y+ k for any k exists any-
more or insufficient area is left to be allocated for 
selecting y+ k. In every iteration, we either select a 
ci for increasing its allocated area by a minimum 
of one or the algorithm terminates for every iter-
ation, but the last we performed was a wcet esti-
mate. Therefore, we perform a maximum of A 
wcet estimates.

4. Results and Discussion

We evaluated this work on a reconfigurable proces-
sor presented in Henkel et al. [28] that we extended 

Fig. 3. Flow chart for dpso based optimization procedure
Reference: [24]
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for execution with hard real-time guarantees. 
A reconfiguration Unit with private memory to 
store configurations provides predictable recon-
figuration of cis. Initiating a specific configura-
tion is done by a single store of the cpu using the 
memory-mapped interface of the reconfiguration. 
We experimented, tested and evaluated our anal-
ysis with an H.264 encoder application that uti-
lizes nine cis covering the majority computation 
intensive kernels. Multimedia applications are fre-
quently subject to hard real time constraints in the 
field of computer vision. The H.264 encoder con-
sists of complicated control flow with more num-
ber of decisions and nested loops. Which path is 
executed within a kernel iteration relies upon the 
nature of mb, either i-mb or p-mb, determined by 
the motion estimation kernel, that is, it is input 
dependent the i-mb and p-mb paths also contain 
separate cis leading to instability of the worst-case 
path, that is, adding more partitions to the cur-
rent worst-case path can result in the other path 
becoming the worst case. The pipeline stalls for the 
reconfiguration delay and continues with entering 
the kernel once the reconfiguration finishes. The 
parameters evaluated were different numbers of s 
partitions A (300 slices each on a Xilinx Virtex 7), 
reconfiguration bandwidths as well as relations of 
cpu frequency and fabric frequency fCPU/ffabric. ffabric 
remains constant at 100MHz, and we select multi-
ple values of it for fCPU that resemble realistic units. 
Note that while the wcet in seconds (wcet cycles/ 
fCPU) is anticipated to get lower (better) with higher 
fCPU, the wcet cycles are increasing (at a constant 
ffabric), because hardware cis perform less computa-
tions on the reconfigurable fabric within one cpu 
cycle [29]-[33].

The most relevant findings should be men-
tioned. It is recommended, if it is the case, to use 
graphs and tables to synthesize the information. If 
formulas were used, it is convenient to present them 
and explain their importance in the study. The 
results presented must be focused on the question 
and focus of the investigation. It is important to 
present them in an orderly, specific way and with-
out personal comments or appreciations. Should 
be noted, if appropriate, observations, experiments 
and data obtained throughout the investigation.

5. Conclusion and Future Work 

This paper presents a novel method to estimate 
the wcet of a program. The method is similar to 
the hybridization of tree and path-based methods, 
which are less precise and global ipet method, 
which is more precise. It determines how to obtain 
the smallest feasible parts of a program, which 
need to be handled as an entity for better precision. 
The method of computation to be applied for each 
such part has not been fixed since it is based on the 
chosen flow of information and program structure 
characteristics. As these parts are generally small in 
comparison with the overall program, the method 
remains fast with no loss of precision on account of 
introducing arbitrary boundaries during computa-
tion in tree and path-based approaches.
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