
ISSN 2357-6014 (en línea)

BY NC ND

Ingeniería Solidaria
ISSN (en línea): 2357-6014
Vol. 14, No. 25 [special issue], May 2018
Artículo de investigación / Research article
doi: https://doi.org/10.16925/.v14i0.2230

Static Worst-Case Execution Time Optimization
using dpso for asip Architecture
El peor caso estático de optimización del tiempo
de ejecición utilizando dpso para arquitectura asip
Mood Venkanna1*, Rameshwar Rao2

 1 Osmania University, Hyderabad, India
 2 Osmania University, Hyderabad, India

* H.No:3-11-100,R T C Colony ,LB Nagar Hyderabad 500074,India. Email: principal@smec.ac.in;
venkatmood03@gmail.com

Received on: September 30th, 2017 Accepted on: December 10th, 2017 Available online: May 1st, 2018

How to cite this article: M. Venkanna and R. Rao,“Static Worst-Case Execution Time Optimization using dpso for asip
Architecture”, Ing. Sol., vol. 14, no. 25 (Special issue), pp. 11, May 2018. doi: https://doi.org/10.16925/.v14i0.2230

Abstract
Introduction: The application of specific instructions significantly improves energy, performance, and code size of configurable
processors. The design of these instructions is performed by the conversion of patterns related to application-specific operations
into effective complex instructions. This research was presented at the icitkm Conference, University of Delhi, India in 2017.

Methods: Static analysis was a prominent research method during late the 1980’s. However, end-to-end measurements consist
of a standard approach in industrial settings. Both static analysis tools perform at a high-level in order to determine the program
structure, which works on source code, or is executable in a disassembled binary. It is possible to work at a low-level if the real
hardware timing information for the executable task has the desired features.

Results: We experimented, tested and evaluated using a H.264 encoder application that uses nine cis, covering most of the
computation intensive kernels. Multimedia applications are frequently subject to hard real time constraints in the field of com-
puter vision. The H.264 encoder consists of complicated control flow with more number of decisions and nested loops. The
parameters evaluated were different numbers of A partitions (300 slices on a Xilinx Virtex 7each), reconfiguration bandwidths, as
well as relations of cpu frequency and fabric frequency f

CPU/
f
fabric

. f
fabric

 remains constant at 100MHz, and we selected a multiplicity
of its values for f

CPU
 that resemble realistic units. Note that while we anticipate the wcet in seconds (wcetcycles/ f

CPU
) to be lower

(better) with higher f
CPU

, the wcet cycles increase (at a constant f
fabric

) because hardware cis perform less computations on the
reconfigurable fabric within one cpu cycle.

Conclusions: The method is similar to tree hybridization and path-based methods which are less precise, and to the global ipet
method, which is more precise. Optimization is evaluated with the Discrete Particle Swarm Optimization (dpso) algorithm for wcet.
For several real-world applications involving embedded processors, the proposed technique develops improved instruction sets
in comparison to native instruction sets.

Originality: For wcet estimation, flow analysis, low-level analysis and calculation phases of the program need to be considered.
Flow analysis phase or the high-level of analysis helps to extract the program’s dynamic behavior that gives information on
functions being called, number of loop iteration, dependencies among if-statements, etc. This is due to the fact that the analysis
is unaware of the execution path corresponding to the longest execution time.

Limitations: This path is executed within a kernel iteration that relies upon the nature of mb, either i-mb or p-mb, determined by
the motion estimation kernel, that is, its’ input depends on the i-mb and p-mb paths ,which also contain separate cis leading to
the instability of the worst-case path, that is, adding more partitions to the current worst-case path can result in the other path
becoming the worst case. The pipeline stalls for the reconfiguration delay and continues when entering the kernel once the
reconfiguration process finishes.

Keywords: embedded processor, specific integrated circuit application, worst case execution time, particle swarm
optimization, discrete particle swarm optimization.

https://doi.org/10.16925/.v14i0.2235
http://orcid.org/0000-0003-3997-0920
http://orcid.org/0000-0001-9427-9038
mailto:principal@smec.ac.in
mailto:venkatmood03@gmail.com
https://doi.org/10.16925/.v14i0.2235

BY NC ND

Research article

doi: https://doi.org/10.16925/.v14i0.2230

El peor caso estático de optimización del tiempo de
ejecución utilizando dpso para arquitectura asip
Resumen
Introducción: la aplicación de instrucciones específicas mejora significativamente la energía, el rendimiento y el tamaño del código de los procesadores
configurables. El diseño de estas instrucciones se realiza mediante conversión de patrones relacionados con operaciones específicas de la aplicación con
instrucciones complejas y efectivas. Esta investigación se presentó en la Conferencia icitkm, Universidad de Delhi, India en 2017.

Métodos: el análisis estático fue un método de investigación prominente durante la década de 1980; sin embargo, las mediciones de extremo a extremo son
un enfoque convencional en los entornos industriales. Ambas herramientas de análisis estático se desempeñan a un alto nivel para determinar la estructura
del programa que funciona en el código fuente, o que se ejecuta en un binario desmontado. Es posible trabajar a bajo nivel si la información de tiempo de
hardware real para la tarea ejecutable presenta las características deseadas.

Resultados: experimentamos, probamos y evaluamos con una aplicación de codificación H.264 que utiliza nueve elementos de configuración y cubre la
mayoría de los núcleos de cálculo intensivo. Las aplicaciones multimedia están frecuentemente sujetas a duras restricciones en tiempo real en el campo de
la visión por computador. El codificador H.264 consiste en un complicado flujo de control con más número de decisiones y bucles anidados. Los parámetros
evaluados fueron de diferentes números de particiones A (300 cortes en un Xilinx Virtex 7 cada uno) y anchos de banda de reconfiguración, así como de
relaciones de frecuencia de cpu y frecuencia de

fabric
fcpu/f

fabric
. f

fabric
 permanece constante a 100MHz. Seleccionamos varios de sus valores para fcpu que se

asemejan a unidades realistas. Es importante tener en cuenta que aun cuando anticipamos el wcet en segundos (ciclos wcet/ fcpu) para que fuesen inferiores
(mejores) con fcpu más alta, los ciclos wcet aumentan (en un tejido constante f) porque los ci de hardware realizan menos cálculos en el tejido reconfigurable
dentro de una cpu de ciclo.

Conclusiones: el método es similar a la hibridación de árboles y métodos basados en rutas, los cuales son menos precisos, y al método I pet global, que es
más preciso. La optimización se evalúa con el algoritmo de optimización de enjambre de partículas discretas (dpso) para wcet. Para varias aplicaciones del
mundo real que involucran procesadores integrados, la técnica propuesta desarrolla conjuntos de instrucciones mejorados en comparación con los conjuntos
de instrucciones nativas.

Originalidad: para la estimación de wcet se debe considerar el análisis de flujo, el análisis de bajo nivel y las fases de cálculo del programa. La fase de análisis
de flujo o alto nivel de análisis, ayuda a extraer el comportamiento dinámico del programa que proporciona información sobre las funciones que se invocan,
el número de iteraciones de bucle, las dependencias entre sentencias if, etc. Esto se debe a que el análisis desconoce la ruta de ejecución correspondiente
al tiempo de ejecución más largo.

Limitaciones: esta ruta se ejecuta dentro de una iteración del núcleo que depende de la naturaleza de mb, ya sea i-mbo p-mb, determinada por el núcleo de
estimación de movimiento, es decir que su entrada depende de las rutas i-mb y p-mb, que también contienen elementos de configuración separados que
conducen a la inestabilidad de la ruta del peor de los casos, es decir que agregar más particiones a la ruta actual del peor de los casos puede hacer que la
otra ruta se convierta en el peor de los casos. La tubería se detiene por la demora de reconfiguración y continúa al ingresar al núcleo una vez que finaliza el
proceso de reconfiguración.

Palabras clave: procesador integrado, aplicación de circuitos específicos integrados, el peor tiempo de ejecución de casos, optimización por enjambre de
partículas, optimización discreta por enjambre de partículas.

O pior caso estático de otimização do tempo de
execução utilizando dpso para arquitetura asip
Resumo
Introdução: a aplicação de instruções específicas melhora significativamente a energia, o desempenho e o tamanho do código dos processadores configu-
ráveis. O desenho dessas instruções é realizado mediante a conversão de padrões relacionados com operações específicas da aplicação com instruções
complexas e efetivas. Esta pesquisa foi apresentada na Conferência icitkm, Universidade de Délhi, Índia em 2017.

Métodos: a análise estática foi um método de pesquisa proeminente durante a década de 1980; contudo, as medições de extremo a extremo são uma abor-
dagem convencional nos contextos industriais. Ambas as ferramentas de análise estática se desempenham a um alto nível para determinar a estrutura do
programa que funciona no código fonte ou que se executa num binário desmontado. É possível trabalhar a baixo nível se a informação de tempo de hardware
real para a tarefa executável apresentar as características desejadas.

Resultados: experimentamos, testamos e avaliamos com uma aplicação de codificação H.264 que utiliza nove elementos de configuração e cobre a maioria
dos núcleos de cálculo intensivo. As aplicações multimídias estão com frequência sujeitas a duras restrições em tempo real no campo da visão por compu-
tador. O codificador H.264 consiste num complicado fluxo de controle com mais número de decisões e circuitos aninhados. Os parâmetros avaliados foram
de diferentes números de particiones A (300 cortes num Xilinx Virtex 7 cada um) e largos de banda de reconfiguração, bem como de relações de frequência
de cpu e frequência de

fabric
fcpu/f

fabric
. f

fabric
 permanece constante a 100MHz. Selecionamos vários de seus valores para fcpu que são semelhantes a unidades

realistas. É importante considerar que, ainda quando antecipamos o wcet em segundos (ciclos wcet/ fcpu), para que fossem inferiores (melhores) com fcpu mais
alta, os ciclos wcet aumentam (num tecido constante f) porque os ci de hardware realizam menos cálculos no tecido reconfigurável dentro de uma cpu de ciclo.

Conclusões: o método é similar à hibridação de árvores e métodos baseados en rotas, os quais são menos precisos, e ao método I pet global, que é mais
preciso. A otimização é avaliada com o algoritmo de otimização por enxame de partículas discretas (dpso) para wcet. Para várias aplicações do mundo real
que envolvem processadores integrados, a técnica proposta desenvolve conjuntos de instruções melhoradas em comparação com os conjuntos de instruções
nativas.

Originalidade: para a estimativa de wcet, deve-se considerar a análise de fluxo, a análise de baixo nível e as fases de cálculo do programa. A fase de análise
de fluxo ou alto nível de análise ajuda a extrair o comportamento dinâmico do programa que proporciona informação sobre as funções invocadas, sobre o
número de iterações de circuito, as dependências entre sentenças if, etc. Isso se deve a que a análise desconhece a rota de execução correspondente ao
tempo de execução mais longo.

Limitações: essa rota é executada dentro de uma iteração do núcleo que depende da natureza de mb, seja i-mb, seja p-mb, determinada pelo núcleo de esti-
mativa de movimento, quer dizer que sua entrada depende das rotas i-mb e p-mb, que também contêm elementos de configuração separados que conduzem à
instabilidade da rota do pior dos casos; em outras palavras, adicionar mais partições à rota atual do pior dos casos pode fazer com que a outra rota se converta
no pior dos casos. A tubulação se detém pela demora de reconfiguração e continua ao ingressar no núcleo assim que finaliza o processo de reconfiguração.

Palavras-chave: processador integrado, aplicação de circuitos específicos integrados, o pior tempo de execução de casos, otimização por enxame de
partículas, otimização discreta por enxame de partículas.

https://doi.org/10.16925/.v14i0.2235

3 de 11doi: https://doi.org/10.16925/.v14i0.2230

1. Introduction

The application of specific processing elements
needs modern optimized embedded systems.
Application Specific Instruction Set Processors
(asips) are crucial for the desired physical and
functional constraints of an embedded system.
These must maintain high programmability and
flexibility.

For a particular application domain, perfor-
mance and power optimization of the processing
elements are essential. The optimizations must
include vector processing, complex domain-specific
arithmetic operations, simd support, etc., provid-
ing extended instruction sets to the processor. The
architecture organization comprises register files
with specific configurations (data width, depth, or
port size), local memories of application data, real-
time data flow customized channels, and synchro-
nization ports with respect to various soc blocks.
Appropriate emulation techniques are desired to
provide optimized configuration possibilities by
exploring customization of software_hardware
systems for accuracy and performance estimates.
For this purpose, the classical hardware character-
ization and functional metric applications such as
the execution time, resource congestion and cache
performance need to be optimized. Early physical
metrics estimations that include the occupied area
and energy/ power consumption are also neces-
sary. Thus, hardware-based emulation techniques
are an alternative to such problems, which require
a scalable and accurate software-based simulation
approach.

Stringent time constraints are essential to any
hard real-time system and can be derived from
the corresponding system under control. These
constraints need to satisfy the upper limits of the
respective execution times. However, in general it
is not easy to maintain this for any program, hence
the halting problems remain difficult to solve. Real-
time systems however, have programming restric-
tions that guarantee the culmination of a program
since recursions are never allowed and are bounded
to the chosen iteration loop count.

The work assumes a real-time system with
a number of tasks that can guarantee the desired
functionality. Fig. 1 provides the relevant proper-
ties corresponding to a real-time task. Each task
demands a specific execution time variation based
on either environmental behavior of input data.

The upper curve indicates the execution times in
which best-case execution time (bcet) and worst-
case execution time (wcet) denotes the short-
est and the longest execution times respectively.
Mostly the state space is very large to explore every
possible execution exhaustively to find out the
exact bcet as well as the wcet. In one approach,
the execution time measurement considers a subset
of all possible executions in order to compute the
minimal and maximal observed execution times.
In general, the approach overestimates the bcet
and underestimates the wcet. Nowadays a com-
mon approach in many industries is to determine
the execution-time bounds and it is known as the
dynamic timing analysis.

The wcet analysis provides a priori informa-
tion on a program’s worst possible execution time
before the program is used in any system. Reliable
wcet estimation is essential in real-time systems
particularly, when the systems control the safety
and critical segmentations like military equipment,
vehicles, and power plants.

The lower curve corresponds to a subset of
measured executions. The darker curve, an enve-
lope of the former, represents the times of all exe-
cutions. It’s minimum and maximum are the
best-case and worst-case execution times respec-
tively, abbreviated bcet and wcet.

2. Related Work

For wcet estimation, flow analysis, low-level
analysis and calculation phases of the program

Fig . 1. Real-time system with wcet problem
Reference: [1]-[12].

4 de 11 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

need to be considered. Flow analysis phase or the
high-level analysis helps to extract the program’s
dynamic behavior that gives information about the
addressed functions, number of loop iterations,
dependencies among if-statements, etc. As the
analysis is unaware of the execution path corre-
sponding to the longest execution time, it requires
such information to give a safe approximation and
must include the possible program executions.
There are methods to procure the information such
as manual annotations [4], automatic flow analysis
[8]-[12], or obtained separately [5]-[7]. The anal-
ysis is usually done on the source code; machine
or intermediate code level can be used. In case of
global low-level analysis different caches such as
the instruction caches [7], [9], [12]-[14], data caches
[12], [15], [16], and branch predictors [17], [18] are
analyzed. As compared to this, the local low-level
analysis deals with scalar pipelines [9], [11]-[12],
[14], [17], [19]-[21] as well as superscalar cpus [22],
[23]. Authors in [13] have argued that an integra-
tion of cache and pipeline analysis is essential for
processors involved with heavy interdependencies
among elements performing different functions.
To extract timing information, measurements and
hardware have been used in [24]. The calculation
phase estimates the wcet of a program by combin-
ing previous phase flow and timing information
[1]-[12].

wcet-optimizing instruction set selection
bears similarity to other static optimizations tar-
geting the worst-case path like instruction cache
locking or scratchpad memory allocation of pro-
gram codes. In this section, we will point out the
differences between these problems for the selec-
tion of the wcet-optimizing instruction. We
also discuss the modern solutions available for
the selection of instruction sets and explain their
limitations. Caches are used to effectively reduce
the average memory access latency of a cpu. It is
extremely difficult to predict whether a memory
access can be served by the cache hit or if it needs
to be served by the main memory. wcet analysis
always needs to reflect a cache miss when it cannot
guarantee a cache hit. This analysis directs to an
over-evaluation of the wcet bound. Cache locking
is a software-controlled mechanism to load code
segments into the cache and prevent them from
being driven out. Several works utilize instruction
cache locking techniques to reduce overestimation
which results from a cache analysis by lowering the

wcet bound [27], [29], [30]. In the selection pro-
cess of the instruction set which has several alter-
natives to choose from the original software or
different cis, where implementation of the same
functionality with the various degrees of parallel-
ism and resource requirements with the extensions
for evaluating multiple alternatives to choose from
(e.g., the different ci implementations), the exist-
ing algorithms for cache locking would remain
inappropriate for our problem. Falk et al. [27] and
Liu et al. [29] model the problem similarly using
Execution Flow Graphs and Execution Flow Trees,
respectively. However, the execution flow is mod-
eled on the level of function calls. Yu and Mitra [32]
perform wcet-optimizing instruction set selection
for extensible processors. These processors contain
custom functional units that can be configured to
implement the frequently used instruction pattern,
which speeds up the process by exploiting instruc-
tion level parallelism and operator chaining. The
wcet-optimizing instruction set is selected per
task, that is, during task execution the instruc-
tion set is fixed. Therefore, the cost of configuring
a selected pattern is not taken into account during
the execution of this approach. In our work, we
mainly target a dynamic reconfiguration based
custom instructions with varying area demands
(1 up to A units of the reconfigurable fabric area).
In order to evaluate the profit of an instruction by
reducing the wcet estimate, we need a factor that
requires a demand in area as well as its reconfigura-
tion delay. The impact of the reconfiguration delay
on wcet optimization is evaluated in section 5.

The application-specific instruction set archi-
tectures (isas) synthesis can be accomplished in a
number of ways based on the first part of isa to be
decided, is-oriented as well as structure-oriented.
Optimization of is using the application’s behav-
ior is made with is-oriented methods [13]-[15]. The
method is based on dependency graphs. To imple-
ment the instruction set either manually or auto-
matically, hardware design is made afterwards.
Among different approaches the peas-i found
to be similar to our method as both these meth-
ods consider the basic is and target pipelined risc
architectures. Nevertheless, the peas-i involves a
fixed set of instructions to select a subset, unlike
our method, instruction encoding is not an issue
here. Other approaches cannot be applied easily
to modern pipelined risc processors due to use of

5 de 11doi: https://doi.org/10.16925/.v14i0.2230

individually designed architectural styles such as
the transport triggered architecture.

Due to increasing complexity, high computa-
tion performance and manufacturing costs in line
with rapid development of advanced integrated
circuit (ic) technology, the demand for high-per-
formance configurable designs has surfaced. It
requires the asips to be incorporated with the soc
design more frequently. A most common technique
in this regard is the generation of automated soft-
ware tools to suit asips. However, to implement the
final rtl, this method is seldom applied. For bet-
ter asip design, the consumption time needs to be
reduced to satisfy the constrained time-to-mar-
ket requirements. There have been other alternate
architectural solutions that use the design, flexibil-
ity, as well as the time to market altogether. One
of those approaches uses a low-cost gpp core with
domain specific instructions. This type of proces-
sor architecture is termed as the asip that improves
the application performances such as the through-
put, latency, etc., efficiently.

Authors have proposed different asip design
flows and asip case studies [16]-[26]. Their work
includes processor customization, processor iden-
tification and instantiates custom instructions in
a processor. This paper proposes an alternative
approach, which can produce better architectures
involving hardware complexity. It aims to reduce
the area cost in comparison with the original soft-
core processor. It analyzes the application’s source
code initially for identification of redundant pro-
cessor instructions and removes them prior to the
logical synthesis process.

Application Specific Instruction set Processor
(asip) is a comparatively new approach to realize
programmable processors, which for the targeted
application domain can deliver very significant
performance and power benefits, while regaining
the advantage of functional flexibility through soft-
ware programmability. In a sense, asips bridge the
design space between general-purpose processor
based implementation of the application and dedi-
cated hardware implementation of the same appli-
cation as an asic.

asip Design Space has two basic classes named
as (a) Instruction Set Architecture (isa) based pro-
cessor, but customized for application and pro-
gramming in a sw-design type of task and (b)
Programmable-hw based. It may be of fpga pro-
gramming for a hw-design type of task. It must be
suitable for data flow–like computation. asip design

is not yet disciplined, but a “form of art”. Some of
the gaps in asip methodology are: (i) incomplete
application characterization;(ii) ad-hoc architec-
tural exploration; designer’s expertise; and (iii)
poor software environments, especially compilers.

3. Methodology

3.1. Static Analysis techniques

To estimate wcet, the static tool examines the
computer software instead of executing it on
the hardware directly. Although static analy-
sis was a prominent research method during late
1980s, end-to-end measurements offer a standard
approach in the industrial setting. Both tools of
static analysis perform at a high-level in order to
determine the program structure, which works on
source code, or executable disassembled binary. It
is possible to work at a low-level provided the real
hardware timing information for the executable
task having the desired features. The presence of
architectural features complicates the analysis
of static wcet at low-level and improves a proces-
sor’s average-case performance that includes the
branch prediction, instruction caches and instruc-
tion pipelines. In timing models it is still difficult
to achieve tight wcet bounds in case these ad-
vanced architectural features are considered. For
example, to simplify wcet estimation for better
predictability cache-locking techniques have been
used.

3.2. System Model and
Problem Formulation

Our optimization approach is applied to Control-
Flow Graph (cfg) of an application in the binary
format, as it is the only way to achieve secure and
precise wcet estimate values. The granularity of
a ci, that is, the amount of software it replaces,
depends on the specific target architecture. For
configuring the cis in hardware, we assume recon-
figurable fabric area to be allocable in up to A
discrete units. This corresponds to the common
area model of dividing the fabric area into equally
sized partitions like in the 1D or 2D partitioned
area models in Steiger et al. [31]. Let ci be the set
of all cis. We assume a specific configuration j of
a ci k ∈ci in hardware to have a constant delay tk, j
to require area on the reconfigurable fabric ak, j∈ [1],

6 de 11 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

In order to provide flexibility to execute the
original software for generated cis, we introduce
ci super blocks. As shown in Fig. 2, ci superblocks
begin with a conditional branch before every ci
(the actual instruction in the binary); which jumps
to the functionally equivalent software code when
the ci is not implemented in hardware. If a config-
uration for the ci is available on the reconfigurable
fabric, then it is executed instead of jumping to the
software. The ci super block ends by joining paths
of hardware ci and software. Multiple ci super-
blocks in the binary can execute the same ci k. Let
B be the set of all blocks, that is, basic blocks (not
contained in super blocks) as well as super blocks.
The function ci(i) determines which ci k is executed
by a super block i ∈B, that is,

ci: B → ci∪ {0}, i → k, with ci(i) = 0 ∈ci if i is a
basic block (not a super block)

The context-dependent delay for executing the
implementation j of ci super block i is denoted as

ei,j for both hardware and software implementa-
tions. While ci execution on the reconfigurable
fabric itself is context independent (tci(i), j is con-
stant, for j > 0), invoking the ci from the cpu pipe-
line can add additional cycles, for example, because
of pipeline hazards present in ci. Therefore, ei, j≥ tci(i), j
for j > 0. Equation (1) is used to concisely formulate
equations on which our wcet estimation is based.
Effectively, we obtain a cfg that can be parameter-
ized by a chosen selection using ci super blocks. In
the following, we will introduce the wcet bound
estimation technique we utilize and show how we
can extend it to our problem formulation to evalu-
ate and direct our optimization.

Selecting an instruction set to optimize the
wcet bound essentially means we aim to mini-
mize the wcet over all possible selections, that is,
we aim to minimize the maximum execution time.
We extend the ilp formulation of ipet for captur-
ing the implementation alternatives of a cik ∈ci.
We introduce new variables yk, j ∈ {0, 1} for every
implementation j with yk, j= 1 if cik is implemented
using alternative j and yk, j= 0 otherwise.

(1)∑ = 1

The total cycle contribution of cik’s super
block i to the wcet bound is given as follows:

(2)∑ | |
()

The wcet for a given selection y without
accounting for reconfiguration delay can be deter-
mined as follows:

(3)WCET (y)=

()

i i + ∑ | |
()

∑| |

()

Every ci super block utilized in a kernel is
configured exactly once before entering the ker-
nel (with zero reconfiguration delay for software
implementation). Therefore, we obtain the wcet
including reconfiguration delay as:

and to take a constant reconfiguration delay rk, j for
configuring it on the fabric. For a constant recon-
figuration delay, a constant bandwidth for trans-
ferring configuration data to the reconfigurable
fabric’s configuration memory needs to be guar-
anteed. We assume the cpu to be delayed during
reconfiguration in this work, and therefore the
system bus could be utilized for reconfiguration
at a guaranteed bandwidth. Along with hardware
configurations, a ci can be implemented using
its original software code j = 0. Since it has been
implemented with a software, it does not have a
constant delay tk,0, because of specific cache and
pipeline analysis (i.e., ak,0= rk,0 = 0).

Fig . 2. ci super block as part of a cfg
Reference: [22-23]

CI Available?

CI Super Block

dS

dS

dt = dSW + dHW

dSW

yci(i),0 yci(i),j, j>0

xi+1

xi+1

xi

dHW

false true

...

...

...

Software
Implementation

(First Basic Block)
CI Hardware

Implementations
(Assembly Instruction)

7 de 11doi: https://doi.org/10.16925/.v14i0.2230

(4)WCET() = WCET' () + ∑

Putting it all together, the wcet-optimizing
instruction set selection problem becomes a com-
binatorial problem with the following objective
function:

(5)

()

i i + ∑ | |
()

∑| |

()
+ ∑

[0,1]

However, this would result in up to 2|CI|*M con-
straints of high complexity, which becomes prac-
tically infeasible even for small values. Also, note
that we do not need to evaluate the ilps for the ipet
instance of the whole application, but only per ker-
nel. Therefore, ilps are considerably less complex
(fewer variables and constraints) than the ilp for
determining the wcet of the whole application. In
the following section, we will show how the search
space can be pruned and feasible y is generated
efficiently.

3.3. Discrete Particle Swarm
Optimization (dpso)

The pso remains a derivative-free global optimized
algorithm having no Hessians or gradients to
compute. The dpso applies qualitative or discrete
distinction between the designated variables and
is the modified pso. Kennedy and Eberhart [24]
developed the first dpso with binary valued parti-
cles. Since then several versions of dpso have been
developed. dpso will facilitate solving the combi-
natorial optimization problems due to its ease of
implementation, simple structure and its robust-
ness. In the dpso algorithm of op each particle
constitutes a tour encompassing the list of nodes
visited such that Tmax, the distance constraint was
obeyed. The starting and ending nodes are distinct
and specified. To ensure a good starting solution in
the population, the first particle was built using the
s/d (score/distance) ratio. Beginning from the first

node, the feasible node having the highest s/d value
is selected as the next city that needs to be visited.
Construction of the first particle is based on these
s/d values as the feasible tour. The initial solutions
for the remaining particles were constructed ran-
domly [27-28].

The new position (new tour) for each parti-
cle was calculated as follows: Generate a random
number Λ corresponding to each node in the cur-
rent particle. If Λ <w, accept the node as a part of a
temporary array, indicated as Ω. Include similarly
nodes in the temporary array using the pi best par-
ticle in case Λ <c1 else use the g best if Λ <c2. This
process removes the duplicate nodes from Ω. Based
on the feasibility of the temporary array, the new
position is either accepted or randomly deleted in
the particle until a feasible solution is obtained. For
better efficacy and to avoid the algorithm to fall in
local optima, researchers have used a local search
tool such as the Reduced Variable Neighborhood
Search (rvns). On switching neighborhoods, the
solution space in rvns is searched. These two neigh-
borhoods of the algorithm are insert and exchange.
While a new node is put in the insert neighborhood
a in the existing tour, whereas it is exchanged in
the exchange neighborhood for an existing node
corresponding to the tour. On completion of rvns,
optimization of the tour is performed using a 2-opt
operation. A node insert operation is carried out
in case the tour length is reduced by the 2-opt
method. It attempts to increase the total score or
fitness value of the tour. The dpso algorithm flow-
chart has been provided in Fig. 2.

In the dpso, the particle values are restricted
either to 0s or 1s. They can be applied for solving
problems with integer variables. Initially, in a dpso
algorithm, a pool of solutions is randomly gen-
erated. In the solution pool, the position vector
describes each solution

(6)= ()

Where n is the swarm size or the number of
solutions (n = 1, 2, . . ., N) whereas, d is the binary
equivalent of variables in the solution space. The
length of the binary solution Xn is selected based
on the number of variables as well as the binary
bits corresponding to each variable. Each solution
is associated with a velocity vector represented by

8 de 11 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

(7)= ()

During each iteration t (t = 1, 2, . . ., T), the
dimensions of each velocity vector Vn have been
updated by the equation

(8)() ()

here, bnd and gd are the local and the global
best positions respectively as achieved by the con-
stituent particles. The notation ω signifies the iner-
tia weight and is a constant similar to the learning
factors θ1 and θ2. The learning factors indicate the
importance given to the local best or the global best
in the swarm and are based on experience. To find
the new position of xnd (0 or 1) equation (8) has been
used, where the random variable r is generated uni-
formly between the values 0 and 1.

(9)()

In this way, a swarm of size N is generated
by iterating T time using the above procedure
each time to achieve the optimal or near optimal
solution.

3.4. Optimal Solution using pso

In theory, we can have up to 2|CI|*M possible selec-
tions y that we need to evaluate. In practice, how-
ever, the search space is considerably smaller for
the following reasons: The number of possible
hardware configurations mk per cik varies a lot, for
example, in our evaluation we had a minimum of 1
to a maximum of 78 = M implementations for cis
(including software implementation) within one
kernel. For the ciwith 78 different implementa-
tions, many implementations had different degrees
of parallelism and latencies but required the same
amount of area and reconfiguration delay when
synthesized to the reconfigurable fabric. When
considering only the minimum-latency implemen-
tation per required fabric area, our algorithm was
able to prune the number of implementations to
relevant ones. Therefore, in practice the relevant
number of implementations per cik is much smaller
than mk + 1.

The implementation y+ k for a cikis the imple-
mentation that can be chosen with minimum
increase for an area over yk resulting in a posi-
tive profit. There might be several implementations
according to this definition with the same required
area. In this case, y+ k is the implementation with
minimum latency tk, j (and min j). If no such imple-
mentation y+ k exists (i.e., no implementation with
positive profit was found), then the ci is not con-
sidered for selecting a different implementation.
Among the cis for which y+ k exists, the algorithm
psochooses the one with the maximum profit and
upgrades y to select y+ k for the chosen cik. This pro-
cess is repeated such that every iteration cik with
maximum profit (y+ k, yk, x) is upgraded. The algo-
rithm terminates when no y+ k for any k exists any-
more or insufficient area is left to be allocated for
selecting y+ k. In every iteration, we either select a
ci for increasing its allocated area by a minimum
of one or the algorithm terminates for every iter-
ation, but the last we performed was a wcet esti-
mate. Therefore, we perform a maximum of A
wcet estimates.

4. Results and Discussion

We evaluated this work on a reconfigurable proces-
sor presented in Henkel et al. [28] that we extended

Fig. 3. Flow chart for dpso based optimization procedure
Reference: [24]

Start

Initialization candidate
solution

 Evaluate fitness

Update personal /Global
fitness

Stopping
criteria
met?

Resolve Global best
solution

 Stop

Update velocity

Update position

9 de 11doi: https://doi.org/10.16925/.v14i0.2230

for execution with hard real-time guarantees.
A reconfiguration Unit with private memory to
store configurations provides predictable recon-
figuration of cis. Initiating a specific configura-
tion is done by a single store of the cpu using the
memory-mapped interface of the reconfiguration.
We experimented, tested and evaluated our anal-
ysis with an H.264 encoder application that uti-
lizes nine cis covering the majority computation
intensive kernels. Multimedia applications are fre-
quently subject to hard real time constraints in the
field of computer vision. The H.264 encoder con-
sists of complicated control flow with more num-
ber of decisions and nested loops. Which path is
executed within a kernel iteration relies upon the
nature of mb, either i-mb or p-mb, determined by
the motion estimation kernel, that is, it is input
dependent the i-mb and p-mb paths also contain
separate cis leading to instability of the worst-case
path, that is, adding more partitions to the cur-
rent worst-case path can result in the other path
becoming the worst case. The pipeline stalls for the
reconfiguration delay and continues with entering
the kernel once the reconfiguration finishes. The
parameters evaluated were different numbers of s
partitions A (300 slices each on a Xilinx Virtex 7),
reconfiguration bandwidths as well as relations of
cpu frequency and fabric frequency fCPU/ffabric. ffabric
remains constant at 100MHz, and we select multi-
ple values of it for fCPU that resemble realistic units.
Note that while the wcet in seconds (wcet cycles/
fCPU) is anticipated to get lower (better) with higher
fCPU, the wcet cycles are increasing (at a constant
ffabric), because hardware cis perform less computa-
tions on the reconfigurable fabric within one cpu
cycle [29]-[33].

The most relevant findings should be men-
tioned. It is recommended, if it is the case, to use
graphs and tables to synthesize the information. If
formulas were used, it is convenient to present them
and explain their importance in the study. The
results presented must be focused on the question
and focus of the investigation. It is important to
present them in an orderly, specific way and with-
out personal comments or appreciations. Should
be noted, if appropriate, observations, experiments
and data obtained throughout the investigation.

5. Conclusion and Future Work

This paper presents a novel method to estimate
the wcet of a program. The method is similar to
the hybridization of tree and path-based methods,
which are less precise and global ipet method,
which is more precise. It determines how to obtain
the smallest feasible parts of a program, which
need to be handled as an entity for better precision.
The method of computation to be applied for each
such part has not been fixed since it is based on the
chosen flow of information and program structure
characteristics. As these parts are generally small in
comparison with the overall program, the method
remains fast with no loss of precision on account of
introducing arbitrary boundaries during computa-
tion in tree and path-based approaches.

References
[1] S. S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L.

Min, C. Y. Park, H. Shin, K. Park, and C. S. Ki, “An
Accurate Worst-Case Timing Analysis for risc

0
1 2 fcpu/ffabric 3 4

200

400

600

800

1000

1200

1400 A=5
Reconf. BW=400MB/s

W
CE

T
Cy

cl
e

(x
 1

00
0)

No Infeasible path info.

With Infeasible path info.
Using greedy
Infeasible path info. Using PSO

Fig . 4. Optimal results for the Encode Macro Block kernel of
the H.264 encoder and different values of fCPU/ ffabric, A as well as
reconfiguration bandwidth
Reference: [12]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700 800 900 1000

Best fitness ever found

Fig . 5. Convergence graph of fitness function using dpso
Reference: [24]

10 de 11 Research article / Ingeniería Solidaria / Volume 14/ Number 25 (Special issue) / May 2018

Processors,” ieee Transactions on Software Enginee-
ring, vol. 21, no. 7, pp. 593-604, Jul. 1995. doi: ht-
tps://doi.org/10.1109/32.392980

[2] S. K. Kim, S. L. Min, and R. Ha, “Efficient Worst Case
Timing Analysis of Data Caching,” in Proc. 2nd ieee
Real-Time Technology and Applications Symposium
(rtas’96). ieee, 1996. doi: https://doi.org/10.1109/
rttas.1996.509540

[3] R. White, F. Müller, C. Healy, D. Whalley, and M.
Harmon, “Timing Analysis for Data Caches and
Set-Associative Caches,” in Proc. 3rd ieee Real-Time
Technology and Applications Symposium (rtas’97),
Jun 1997, pp. 192-202, doi: https://doi.org/10.1109/
RTTAS.1997.601358

[4] A. Colin and I. Puaut, “Worst Case Execution
Time Analysis for a Processor with Branch Pre-
diction,” Journal of Real-Time Systems, vol. 18, no.
2/3, pp. 249-274, May 2000, doi: https://doi.or-
g/10.1023/a:1008149332687

[5] T. Mitra and A. Roychoudhury, “Effects of Branch
Prediction on Worst Case Execution Time of Pro-
grams,” National University of Singapore (nus),
Tech. Rep. 11-01, Nov 2001.

[6] J. Engblom, “Processor Pipelines and Static
Worst-Case Execution Time Analysis,” Ph.D.
dissertation, Dept. of Information Technology,
Uppsala University, Uppsala, Sweden, Apr. 2002.
Available: https://www.diva-portal.org/smash/get/
diva2:161408/FULLTEXT01.pdf

[7] J. Engblom and A. Ermedahl, “Pipeline Timing
Analysis Using a Trace-Driven Simulator,” in Proc.
6th International Conference on Real-Time Com-
puting Systems and Applications (rtcsa’99). ieee
Computer Society Press, Dec1999. doi: https://doi.
org/10.1109/RTCSA.1999.811197

[8] C. Ferdinand, R. Heckmann, M. Langenbach, F.
Martin, M. Schmidt, H. Theiling, S. Thesing, and R.
Wilhelm, “Reliable and Precise wcet Determination
for a Real-Life Processor,” in Proc. 1st International
Workshop on Embedded Systems, (emosoft2000),
lncs2211, Oct. 2001.

[9] S. S. Lim, J. H. Han, J. Kim, and S. L. Min, “A Worst
Case Timing Analysis Technique for Multiple-Issue
Machines,” in Proc. 19th ieee Real-Time Systems
Symposium (rtss’98), Dec 1998. doi: https://doi.
org/10.1109/REAL.1998.739765

[10] J. Schneider and C. Ferdinand, “Pipeline Beha-
viour Prediction for Superscalar Processors by
Abstract Interpretation,” in Proc. sigplan Works-
hop on Languages, Compilers and Tools for Embed-
ded Systems (lctes’99). May 1999. doi: https://doi.
org/10.1145/315253.314432

[11] S. Petters and G. Farber, “Making Worst-Case Exe-
cution Time Analysis for Hard Real-Time Tasks on
State of the Art Processors Feasible,” in Proc. 6th
International Conferenceon Real-Time Computing
Systems and Applications (rtcsa’99), Dec. 1999. doi:
https://doi.org/10.1109/RTCSA.1999.811296

[12] M. Venkanna, R. Rao, and P.Chandra Sekhar,
“Application of asip in Embedded Design with Op-
timized Clock Management,” icitkm Conference,
Newdelhi, pp. 161-165, 2017. doi: https://doi.or-
g/10.15439/2017km41

[13] A. Alomary, T. Nakata, Y. Honma, J. Sato, N. Hikichi,
and M. Imai, “peas-i: A hardware/software co-de-
sign system for asips,” in Proc. euro-dac, 1993. doi:
https://doi.org/10.1109/EURDAC.1993.410608

[14] J. Van Praetet, G. Goossens, D. Lanneer, and H.
De Man, “Instruction set definition and instruc-
tion selection for asips,” in Proc. HLS Symposium
1994, Instruction set definition and instruction se-
lection for asips, 1994, doi: https://doi.org/10.1109/
ISHLS.1994.302348.

[15] N. Clark, H. Zhong, and S. Mahlke, “Processor Ac-
celeration through Automated Instruction Set Cus-
tomization.” In Proceedings of the 36th annual ieee/
acm International Symposium on Micro architecture
(micro36), 2003.

[16] R. R. Hoare et al., “Rapid vliw Processor Custo-
mization for Signal Processing Applications Using
Combinational Hardware Functions,” eurasip Jour-
nal on Applied Signal Processing, vol. 2006, no. 46472,
2010. doi: https://doi.org/10.1155/ASP/2006/46472

[17] F. Tlili and A. Ghorbel, “asip Solution for Imple-
mentation of H.264 Multi Resolution Motion Esti-
mation,” International Journal of Communications,
Network and System Sciences, vol. 3 no. 5, May 2010.
doi: https://doi.org/10.4236/ijcns.2010.35060

[18] P. Guironnet de Massas, P. Amblard, and F. Pétrot,
“On sparc leon-2 isa Extensions Experiments for
mpeg Encoding Acceleration,” Journal vlsi De-
sign, vol. 2007, no. 28686, 2007. doi: https://doi.
org/10.1155/2007/28686

[19] S. Tillich, “Instruction Set Extensions for Secret-Key
Cryptography,” Ph .D. Forum at the 9th Conference
on Design, Automation and Test in Europe (2006),
Munich, Germany, March 6, 2006. doi: https://doi.
org/10.1109/CCST.2014.6986988

[20] F. Naessens, A. Bourdoux, and A. Dejonghe, “A
flexible asip decoder for combined binary and
non-binary ldpc codes,” 17th ieee Symposium on
Communications and Vehicular Technology (scvt),
24-25 Nov. 2010. doi: https://doi.org/10.1109/
SCVT.2010.5720462

https://doi.org/10.1109/32.392980
https://doi.org/10.1109/RTTAS.1997.601358
https://doi.org/10.1109/RTTAS.1997.601358
https://doi.org/10.1023/a:1008149332687
https://doi.org/10.1023/a:1008149332687
https://doi.org/10.1109/RTCSA.1999.811296
https://doi.org/10.1109/EURDAC.1993.410608
https://doi.org/10.1109/CCST.2014.6986988
https://doi.org/10.1109/SCVT.2010.5720462
https://doi.org/10.1109/SCVT.2010.5720462

11 de 11doi: https://doi.org/10.16925/.v14i0.2230

[21] G. Kappen, L. Kurz, O. Priebe, and T. G. Noll, “De-
sign Space Exploration for an asip/Co-Processor
Architecture used in gnss Receivers,” Journal of Sig-
nal Processing Systems, vol. 58, no. 1, pp. 41-51, 2010.
doi: https://doi.org/10.1007/s11265-008-0261-z

[22] J. Kennedy and R. C. Eberhart, “A discrete binary
version of the particle swarm algorithm,” in ieee
International Conference on Systems, Man, and Cy-
bernetics, 1997. Computational Cybernetics and Si-
mulation, 1997, vol. 5, pp. 4104-4108. doi: https://
doi.org/10.1109/ICSMC.1997.637339

[23] Q. K. Pan, M. F. Tasgetiren, and Y. C. Liang, “A dis-
crete particle swarm optimization algorithm for the
no-wait flowshop scheduling problem,” Computers
& Operations Research, vol. 35, no. 9, pp. 2807-2839,
2008. doi: https://doi.org/10.1016/j.cor.2006.12.030

[24] H. Falk and J. C. Kleinsorge, “Optimal static
wcet-aware scratchpad allocation of program code,”
In Proc. of Design Automat. Conf. acm, pp. 732-737,
2009. doi: https://doi.org/10.1145/1629911.1630101

[25] H. Falk, S. Plazar, and H. Theiling, “Compi-
le-time decided instruction cache locking using
worst-case execution paths,” in Proc. of Int. Conf.
on Hardware/Software Codesign and Syst. Syn-
thesis. ACM, pp. 143-148, 2007. doi: https://doi.
org/10.1145/1289816.1289853

[26] J. Henkel, L. Bauer, M. Hubner, and Ar. Grudnitsky,
“i-Core: A run-time adaptive processor for embed-
ded multi-core systems”, in Proc. Int. Conf. on En-
gineering of Reconfig. Syst. and Algorithms, 2011.
Available: http://worldcomp-proceedings.com/
proc/p2011/ERS6061.pdf

[27] T. Liu, M. Li, and C. J. Xue, “Minimizing wcet for
real-time embedded systems via static instruction
cache locking”, in Real-Time and Embed. Technol.
Applications Symp. ieee, pp. 35-44, 2009. doi: ht-
tps://doi.org/10.1109/RTAS.2009.11

[28] S. Plazar, J. C. Kleinsorge, P. Marwedel and H. Falk,
“wcet-aware static locking of instruction caches”, in
Proc. 10th International Symposium on Code Gene-
ration and Optimization, acm, pp. 44-52, 2012. doi:
https://doi.org/10.1145/2259016.2259023.

[29] C. Steiger, H. Walder, M. Platzner, and L. Thiele,
“Online scheduling and placement of real-time tas-
ks to partially reconfigurable devices,” in Proc. of
Real-Time Syst. Symp. ieee, pp. 224-225, 2003. doi:
https://doi.org/10.1109/REAL.2003.1253269

[30] P. Yu and T. Mitra, “Scalable custom instructions
identification for instruction-set extensible proces-
sors,” in Proc. of Int. Conf. on Compilers, Architecture
and Synthesis for Embed. Syst. acm, pp. 69-78, 2004.
doi: https://doi.org/10.1145/1023833.1023844

https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1109/RTAS.2009.11
https://doi.org/10.1145/1023833.1023844

